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Abstract 
Model-based estimation has been used for decades now. It can produce much more accurate 
estimates than classical design-based approaches in a variety of settings. Of particular interest is tax 
settings with a goal of estimating a dependent variable, y, such as a qualifying amount or taxable 
amount, from a model built from an independent variable, x, that typically is some type of cost or 
expenditure. The independent variable tends to be highly skewed with many low values and fewer 
larger values; it typically fits a gamma distribution.  
 
Classical regression assumes model residuals from sampled values are normally distributed around 
the regression line.  However, this is not a requirement of model-based estimation. 
 
In many tax settings, y=x with probability p, and y=0 with probability 1-p. 
 
This paper reviews the theoretical foundation of applying model-based estimation in this common 
tax setting and provides simulations demonstrating its efficacy in comparison to common design-
based alternatives used in tax — the Mean Per Unit (MPU) or Horvitz-Thompson estimator, and the 
difference estimator (DIFF).   
 
Model-based methods were found to be superior to the design approaches in nearly all settings. 
 
Key Words: Tax, All or Nothing, Model-Based Estimation, Design-Based Estimation, CV, 
MSE, Confidence Interval Coverage, Simulation 
 
 

1. Introduction 
 
Many applications in tax require estimation of qualifying expenses for a credit deduction, where the 
expenses (the auxiliary variable, x) have a highly skewed gamma distribution, and the qualifying 
expenses (the dependent variable, y) is either equal to its auxiliary variable, x, with probability p, or 
is zero with probability 1-p. That is, 

𝑦𝑦 = �𝑥𝑥, 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑤𝑤𝑝𝑝𝑤𝑤𝑤𝑤𝑦𝑦 𝑝𝑝
0, 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑤𝑤𝑝𝑝𝑤𝑤𝑤𝑤𝑦𝑦 1 − 𝑝𝑝 

where p is a constant, but unknown, value between 0 and 1.  

The accuracy of estimating total values using design-based and model-based estimation for “all or 
nothing” data is studied in this paper for this common tax setting.  

The Internal Revenue Service (IRS) issued Revenue Procedure 2011-42 (and many revenue 
procedures and field directives) advising their Exam Teams how to review taxpayer conducted 
samples that estimate values for federal tax purposes. Revenue Procedure 2011-42 suggests four 
classical estimators a taxpayer might use; however, taxpayers are not restricted to these four 



methods.1 Model-based estimation is not one of the four methods, but it has been used successfully 
in tax applications for three decades now. The IRS Revenue Procedure 2011-42 estimation methods 
are all design-based: i) the Mean Per Unit (MPU), 2) the difference (DIFF) estimator, iii) combined 
ratio, and iv) combined regression. In this paper, the accuracy of model-model based estimation was 
compared to the alternatives that would be used out of IRS Revenue Procedure 2011-42. However, 
focus was restricted to just the MPU and DIFF estimators because the other two required additional 
assumptions2 for use that were not uniformly met in all of the simulation scenarios. 
 
 

2. Research Questions 
In this research, the following questions were researched either through theoretical derivations or 
analysis of simulation results.  
 

1. Are there any theoretical reasons that would preclude the use of model-based estimation? 
2. How accurate is it compared to design-based methods? 
3. Is there evidence of bias? 
4. How is the confidence interval coverage? 
5. Is its efficacy impacted by low or high values of p? 

Therefore,  this study began with revisiting the theoretical foundation of a model-based estimation 
but with the added assumption that it is applied to all or nothing data. Then simulations were 
conducted to compare the accuracy of model-based estimates to two most common alternatives in 
the same tax settings - the MPU and DIFF estimators - which are design-based estimators. 
Confidence interval coverage was analyzed in the simulations, along with considerations of potential 
bias.  The simulations used a range of low to high values for p to understand the behavior of the 
method across a span of qualifying percentages. 
 
 

3. Revisit Model-Based Estimation Theory in the Context of All or Nothing Data 
First, there is a refresher on model-based estimation, making all theoretical adaptations as 
appropriate to the setting. Following the textbook, Sampling Design and Analysis by Sharon Lohr3, 
the statistical foundation of model-based estimation was revisited in the context of all or nothing 
data.  
 
3.1 A Line through the Origin 
A line through the origin was modeled because when there are no expenses, nothing would qualify, 
and therefore, a model through the origin makes the most sense in this tax setting. The calculations 
below closely follow the nomenclature and derivations by Lohr, only making necessary changes to 
accommodate the special case of its application to all or nothing data. 
 

 
1 When taxpayers use methods beyond the Revenue Procedure 2011-42, in §4.05(4),  Exam Teams 
are instructed to elevate the review of the statistical work to one of the IRS Statistical Coordinators 
who have more background and training in statistical methods. 
2 For the combined ratio and combined regression estimators, per Revenue Procedure 2011-42, the 
IRS restrictions are 1) the minimum non-certainty stratum sample size is 30, 2) total sample size is 
100, 3) the Coefficient of Variation (CV) of both the dependent and independent variables must 
15% or less and 4) for the combined ratio estimate, the dependent and independent variable must 
have the same sign. 
3 Sharon L. Lohr, PhD is widely published in the area of statistical sampling and methods for 
education, public policy, law, and crime. She is a Fellow of the American Statistical Association 
and an elected member of the International Statistical Institute. She received the Gertrude M. Cox, 
Morris Hansen, and Deming Awards. She was formerly a Dean’s Distinguished Professor of 
Statistics at Arizona State University as well as a Vice President at Westat. She is now an 
independent statistical consultant. 



A linear relation between expenses and qualifying expenses is assumed. Furthermore, the 
relationship is considered to pass through the origin and assumed to have random noise, 𝜀𝜀, as well 
as heteroscedastic variance - a function of 𝑥𝑥 to be specified later.  
 
3.2 Nomenclature and Assumptions 
Below are the nomenclature and standard assumptions used by Lohr. 
 
Let: 
                 𝑤𝑤 = 1,2,3 … represent the 𝑤𝑤𝑡𝑡ℎ item in the population, 
                𝑛𝑛 = the sample size, 
              𝑁𝑁 = the population count, 
              𝑆𝑆 = the set of units selected in the sample, and 
              𝑆𝑆′ = the set of units not selected in the sample. 
  
Assume: 

X > 0  ∀ 𝑤𝑤 = 1,2, … ,𝑁𝑁  and are all known for every item in the population, 
      𝑦𝑦𝑖𝑖                  are known in the sample ∀ 𝑤𝑤 = 1,2, … ,𝑛𝑛,  
      𝑌𝑌1,𝑌𝑌2, … ,𝑌𝑌𝑁𝑁  are independent, and 
      𝑌𝑌𝑖𝑖 = 𝛽𝛽𝑥𝑥𝑖𝑖 + 𝜀𝜀𝑖𝑖 where 𝐸𝐸𝑀𝑀(𝜀𝜀𝑖𝑖) = 0.4 

 
Lohr explains that under the model,   

     𝑇𝑇𝑦𝑦 = ∑ 𝑌𝑌𝑖𝑖𝑁𝑁
𝑖𝑖=1   is a random variable, 5  

     𝑤𝑤𝑦𝑦 = ∑ 𝑦𝑦𝑖𝑖𝑁𝑁
𝑖𝑖=1    is the total population value of interest and is just one realization of the 

random variable 𝑇𝑇𝑦𝑦, 
      𝑥𝑥𝑖𝑖 are constants ∀ 𝑤𝑤, 
      𝛽𝛽  is a constant, while �̂�𝛽 (see below) is a random variable, and 
      �̂�𝛽  is independent of  ∑ 𝑌𝑌𝑖𝑖𝑖𝑖∉𝑆𝑆  since  �̂�𝛽 is based solely on sampled records. 

 
So far there has been no departure from Lohr’s textbook. However, now two more assumptions 
are introduced to accommodate the all or nothing data. Assume:  
 

𝑌𝑌𝑖𝑖 = �𝑥𝑥𝑖𝑖        𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑤𝑤𝑝𝑝𝑤𝑤𝑤𝑤𝑦𝑦 𝑝𝑝
0  𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑤𝑤𝑝𝑝𝑤𝑤𝑤𝑤𝑦𝑦 1 − 𝑝𝑝 

and 
𝑉𝑉𝑀𝑀(𝜀𝜀𝑖𝑖) =  𝑓𝑓(𝑥𝑥𝑖𝑖) 𝜎𝜎2 where 𝑓𝑓(𝑥𝑥𝑖𝑖) is some function of 𝑥𝑥𝑖𝑖.6 

 
3.3 A closer look at 𝐄𝐄𝐌𝐌(𝛆𝛆𝐢𝐢) 
Refer to the graphical representation of the model in Figure 3.3.1 below. The plot of the data is split 
with 𝑝𝑝 percent of the data falling on the line 𝑦𝑦𝑖𝑖 = 𝑥𝑥𝑖𝑖 and (1 − 𝑝𝑝) percent of the data falling on the 
line 𝑦𝑦𝑖𝑖 = 0. The regression line, 𝑦𝑦𝑖𝑖 = 𝛽𝛽𝑥𝑥𝑖𝑖, falls somewhere between the two lines. The error terms 
are 𝜀𝜀𝑖𝑖 = 𝑥𝑥𝑖𝑖 − 𝛽𝛽𝑥𝑥𝑖𝑖 for 𝑝𝑝 percent of the population and 𝜀𝜀𝑖𝑖 = 0 − 𝛽𝛽𝑥𝑥𝑖𝑖 for (1 − 𝑝𝑝) percent for the 
remaining population.  Therefore, 
 

𝐸𝐸𝑀𝑀(𝜀𝜀𝑖𝑖) = 𝑝𝑝 (𝑥𝑥𝑖𝑖 − 𝛽𝛽𝑥𝑥𝑖𝑖) + (1 − 𝑝𝑝)( 0 − 𝛽𝛽𝑥𝑥𝑖𝑖) = 𝑥𝑥𝑖𝑖(𝑝𝑝 − 𝛽𝛽) 

 
4 The expected value under the model assumptions is denoted 𝐸𝐸𝑀𝑀. 
5 Lohr points out this is the main distinction between design and model-based estimation. In design-
based estimation, based on probability theory, 𝑇𝑇𝑦𝑦 is considered fixed — albeit unknown and the 
random variables are the sample indicators. It is a very different paradigm from the traditional 
design-based estimation that relies upon probability theory. Model based point estimates are often 
consistent with design-based estimates (sometimes exactly equal depending on the model).  
However, the variance is very different, and the model determines the variance. 
6 Here, 𝑉𝑉𝑀𝑀 is the variance under the model assumptions and departs from Lohr’s derivation. In her 
text, 𝑓𝑓(𝑥𝑥𝑖𝑖)=𝑥𝑥𝑖𝑖. 
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Figure 3.3.2:  Mirror Images of Residuals from p=90% and p=10% 

and since 𝐸𝐸𝑀𝑀(𝜀𝜀𝑖𝑖) = 0, and 𝑥𝑥𝑖𝑖 > 0 ∀ 𝑤𝑤, it follows that 𝑝𝑝 = 𝛽𝛽. Thus, the slop of the regression line is 
the proportion, 𝑝𝑝, of expenses that qualify. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Note the similarities of the plots in Figure 3.3.2 below. The first plot shows the regression line and 
two of the residuals when 𝑝𝑝 = 90%. Flipping each qualifying case to non-qualifying as well as each 
non-qualifying to qualifying, produces the next plot where 𝑝𝑝 = 10%. Note that the lengths of the 
corresponding residuals are the same. Therefore, the accuracy of model-estimators, which heavily 
depends on the size of the residuals, should be similar when 𝑝𝑝 is close to zero or when 𝑝𝑝 is close to 
one. 
 
 
  
  
 
  
  
 
 
 
 
 

 
 

3.4 Heteroscedasticity of All or Nothing Data 
Note that the |𝜀𝜀𝑖𝑖| clearly increases with 𝑥𝑥𝑖𝑖, therefore, it is unsurprising that Var(𝜀𝜀𝑖𝑖) increases with 
 𝑥𝑥𝑖𝑖 as well. The calculations are as follows: 
 

𝑉𝑉𝑀𝑀(𝜀𝜀𝑖𝑖) = 𝐸𝐸𝑀𝑀�𝜀𝜀𝑖𝑖2� − 𝐸𝐸𝑀𝑀2 (𝜀𝜀𝑖𝑖) = 𝐸𝐸𝑀𝑀(𝑦𝑦𝑖𝑖 − 𝛽𝛽𝑥𝑥𝑖𝑖)2 − 0 
       =  𝑝𝑝(𝑥𝑥𝑖𝑖 − 𝛽𝛽𝑥𝑥𝑖𝑖)2 + (1 − 𝑝𝑝)(𝛽𝛽𝑥𝑥𝑖𝑖)2 

                                                = 𝑥𝑥𝑖𝑖2𝑝𝑝(1 − 𝑝𝑝). 
 
Therefore, take 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑖𝑖2, and it follows that 𝜎𝜎2 = 𝑝𝑝(1 − 𝑝𝑝) so that  
 

𝑉𝑉𝑀𝑀(𝜀𝜀𝑖𝑖) =  𝑥𝑥𝑖𝑖2𝑝𝑝(1 − 𝑝𝑝) =  𝑥𝑥𝑖𝑖2𝜎𝜎2. 
 
Lohr’s derivations used the variance assumption 𝑉𝑉𝑀𝑀(𝜀𝜀𝑖𝑖) =  𝑥𝑥𝑖𝑖𝜎𝜎2, therefore, the model-based 
estimate and its variance require their own derivations in the presence of all or nothing data. The 
derivations closely follow Lohr’s work with the main exception being the assumption of the variance 
structure. 
 

p=90%                                                                             p=10% 

𝑦𝑦𝑖𝑖 = 𝛽𝛽𝑥𝑥𝑖𝑖 + 𝜀𝜀𝑖𝑖 

𝜀𝜀𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝛽𝛽𝑥𝑥𝑖𝑖 

𝜀𝜀𝑖𝑖 = 0 − 𝛽𝛽𝑥𝑥𝑖𝑖 

Figure 3.3.1: Illustration of Model with All of 
Nothing Data 

𝑦𝑦𝑖𝑖 = 0
 



3.5 Total, 𝑻𝑻𝒚𝒚 and 𝜷𝜷� with All or Nothing Data 
When estimating the total qualifying amount for a population, 𝑤𝑤𝑦𝑦, the model-based approach uses 
the values found in the sample, 𝑦𝑦𝑖𝑖, to predict the values for the units not sampled. This gives: 
 

𝑤𝑤𝑦𝑦 = �𝑦𝑦𝑖𝑖
𝑖𝑖∈𝑆𝑆

+ �𝑦𝑦𝑖𝑖
𝑖𝑖∉𝑆𝑆

=     �𝑦𝑦𝑖𝑖
𝑖𝑖∈𝑆𝑆

+ ��̂�𝛽𝑥𝑥𝑖𝑖
𝑖𝑖∉𝑆𝑆

  

Find �̂�𝛽 to minimize the sum of the weighted squares in the errors:  ∑ 𝑥𝑥𝑖𝑖−2 (𝑦𝑦𝑖𝑖 −  𝛽𝛽𝑥𝑥𝑖𝑖)2𝑖𝑖∈𝑆𝑆 . 
 
Set the first derivative to 0 and solve: 

𝜕𝜕
𝜕𝜕𝛽𝛽

��𝑥𝑥𝑖𝑖−2(𝑦𝑦𝑖𝑖 −  𝛽𝛽𝑥𝑥𝑖𝑖)2
𝑖𝑖𝑖𝑖𝑆𝑆

� = 0 

 
−2�𝑥𝑥𝑖𝑖−2(𝑦𝑦𝑖𝑖 −  𝛽𝛽𝑥𝑥𝑖𝑖)

𝑖𝑖𝑖𝑖𝑆𝑆

𝑥𝑥𝑖𝑖 = 0 

 
         ∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑆𝑆 𝑥𝑥𝑖𝑖−1 = 𝑛𝑛𝛽𝛽. 

Hence, take  �̂�𝛽 = (1/𝑛𝑛)∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑆𝑆 /𝑥𝑥𝑖𝑖 . 
 
Use the known 𝑌𝑌𝑖𝑖 for sampled units and apply the model, 𝑌𝑌𝑖𝑖 =  �̂�𝛽𝑥𝑥𝑖𝑖, for non-sampled units to arrive 
at the model-based estimator: 

𝑇𝑇�𝑦𝑦 = ∑ 𝑌𝑌𝑖𝑖𝑖𝑖∈𝑆𝑆   + �̂�𝛽 ∑ 𝑥𝑥𝑖𝑖𝑖𝑖∉𝑆𝑆 . 
 

3.6 Consistency 
Letting 𝑝𝑝𝑖𝑖 =  𝑦𝑦𝑖𝑖/𝑥𝑥𝑖𝑖, note that �̂�𝛽 = �̅�𝑝  is the average ratio of  𝑦𝑦𝑖𝑖 to  𝑥𝑥𝑖𝑖. Since 𝑝𝑝𝑖𝑖 = 1 with probability 𝑝𝑝, 
and 𝑝𝑝𝑖𝑖 = 0 with probability 1 − 𝑝𝑝,  �̂�𝛽 is also equivalent to the binomial estimate for p. While this 
makes intuitive sense, it should also be noted that �̅�𝑝 is an inconsistent7 estimator of 𝑅𝑅′ =
∑ 𝑌𝑌𝑖𝑖𝑁𝑁
𝑖𝑖=1 /∑ 𝑋𝑋𝑖𝑖𝑁𝑁

𝑖𝑖=1 . 
 
3.7 Model-Unbiased Estimates 
Note that �̂�𝛽 and  𝑇𝑇�𝑦𝑦 are model-unbiased estimates of 𝛽𝛽 and T respectively: 
 

𝐸𝐸𝑀𝑀��̂�𝛽  − 𝛽𝛽� =  𝐸𝐸𝑀𝑀 �
1 
𝑛𝑛
�

𝑌𝑌𝑖𝑖
𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑆𝑆

  − 𝛽𝛽� = 𝐸𝐸𝑀𝑀 �
1 
𝑛𝑛
�

𝛽𝛽𝑥𝑥𝑖𝑖 + 𝜀𝜀𝑖𝑖
𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑆𝑆

 − 𝛽𝛽� = 𝐸𝐸𝑀𝑀 �𝛽𝛽 +
1 
𝑛𝑛
�

𝜀𝜀𝑖𝑖
𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑆𝑆

 −  𝛽𝛽� = 0 

and 
 

𝐸𝐸𝑀𝑀�𝑇𝑇�𝑦𝑦 − 𝑇𝑇� = 𝐸𝐸𝑀𝑀�∑ 𝑌𝑌𝑖𝑖𝑖𝑖∈𝑆𝑆 +  �̂�𝛽 ∑ 𝑥𝑥𝑖𝑖𝑖𝑖∉𝑆𝑆  −  ∑ 𝑌𝑌𝑖𝑖𝑖𝑖∈𝑆𝑆 − ∑ 𝑌𝑌𝑖𝑖𝑖𝑖∉𝑆𝑆 � = 𝐸𝐸𝑀𝑀�(�̂�𝛽 − 𝛽𝛽)∑ 𝑥𝑥𝑖𝑖𝑖𝑖∉𝑆𝑆 � =0. 
 
3.8 The Variance of 𝑻𝑻�𝒚𝒚 
Note that: 
 
𝑉𝑉𝑀𝑀�𝑇𝑇�𝑦𝑦 − 𝑇𝑇� = 𝑉𝑉𝑀𝑀�∑ 𝑌𝑌𝑖𝑖𝑖𝑖∈𝑆𝑆 + �̂�𝛽 ∑ 𝑥𝑥𝑖𝑖𝑖𝑖∉𝑆𝑆 − ∑ 𝑌𝑌𝑖𝑖𝑖𝑖∈𝑆𝑆 − ∑ 𝑌𝑌𝑖𝑖𝑖𝑖∉𝑆𝑆 � = (∑ 𝑥𝑥𝑖𝑖𝑖𝑖∉𝑆𝑆 )2𝑉𝑉𝑀𝑀��̂�𝛽� + ∑ 𝑉𝑉𝑀𝑀�𝑌𝑌𝚤𝚤��𝑖𝑖∉𝑆𝑆 . 

 
Now,  

𝑉𝑉𝑀𝑀[𝑌𝑌𝑖𝑖] = 𝑉𝑉𝑀𝑀[(𝛽𝛽𝑥𝑥𝑖𝑖 +  𝜀𝜀𝑖𝑖)] = 𝑉𝑉𝑀𝑀[𝜀𝜀𝑖𝑖] = 𝑥𝑥𝑖𝑖2𝜎𝜎2. 
Also,    

 
7 Consider a population with only two records, a $1 expense that qualifies, and a $1,000,000 expense that does 
not. Sampling the entire population results in �̅�𝑝 = 0.5 , while 𝑅𝑅′ = 1

1,000,001
= 0.000001. Therefore, by 

definition, �̅�𝑝 is an inconsistent estimate of 𝑅𝑅′ since a sample of the entire population does not result in the true 
population value 𝑅𝑅′. 



𝑉𝑉𝑀𝑀��̂�𝛽� =  𝑉𝑉𝑀𝑀 �
∑ 𝑦𝑦𝑖𝑖/𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑆𝑆

𝑛𝑛
�  =

1
𝑛𝑛2

  �𝑥𝑥𝑖𝑖−2𝑉𝑉𝑀𝑀[𝑦𝑦𝑖𝑖]
𝑖𝑖𝑖𝑖𝑆𝑆

  =
∑ 𝑥𝑥𝑖𝑖−2𝑥𝑥𝑖𝑖2𝜎𝜎2𝑖𝑖𝑖𝑖𝑆𝑆

𝑛𝑛2
=  

𝑛𝑛𝜎𝜎2

𝑛𝑛2
=  

𝜎𝜎2

𝑛𝑛
 

. 
 
Hence 

𝑉𝑉𝑀𝑀�𝑇𝑇�𝑦𝑦 − 𝑇𝑇� = (∑ 𝑥𝑥𝑖𝑖𝑖𝑖∉𝑆𝑆 )2 𝜎𝜎
2

𝑛𝑛
 + ∑ 𝑥𝑥𝑖𝑖2𝑖𝑖∉𝑆𝑆  𝜎𝜎2= �(∑ 𝑥𝑥𝑖𝑖𝑖𝑖∉𝑆𝑆 )2 /𝑛𝑛 + ∑ 𝑥𝑥𝑖𝑖2𝑖𝑖∉𝑆𝑆 � 𝜎𝜎2. 

 
Find 𝜎𝜎2 from the sum of weighted squares of the residuals. 

  𝐸𝐸𝑀𝑀 ��𝑥𝑥𝑖𝑖−2(𝑦𝑦𝑖𝑖 − �̂�𝛽𝑥𝑥𝑖𝑖)2
𝑖𝑖𝑖𝑖𝑆𝑆

� = 𝐸𝐸𝑀𝑀 ���
𝑦𝑦𝑖𝑖
𝑥𝑥𝑖𝑖
− �̂�𝛽�

2

𝑖𝑖𝑖𝑖𝑆𝑆

� = 𝐸𝐸𝑀𝑀 ���
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𝑥𝑥𝑖𝑖2
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𝑖𝑖𝑖𝑖𝑆𝑆
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=
(𝑛𝑛 − 1)

𝑛𝑛
𝑛𝑛𝜎𝜎2 = (𝑛𝑛 − 1)𝜎𝜎2 

So, take 
𝜎𝜎2 ≅ 𝜎𝜎�2 = ∑ 𝑥𝑥𝑖𝑖−2(𝑦𝑦𝑖𝑖 − �̂�𝛽𝑥𝑥𝑖𝑖)2/(𝑛𝑛 − 1)𝑖𝑖𝑖𝑖𝑆𝑆 . 

   
 

4. Simulations 
 
4.1  Generating Populations 
Since financial data is highly skewed, the gamma distribution using the rgamma function in the 
statistical software R was used to simulate expenses (the auxiliary variable, x) of three populations 
of different sizes: small (𝑵𝑵 = 𝟏𝟏𝟏𝟏𝟏𝟏), medium (𝑵𝑵 = 𝟏𝟏,𝟏𝟏𝟏𝟏𝟏𝟏), and large (𝑵𝑵 = 𝟏𝟏𝟏𝟏,𝟏𝟏𝟏𝟏𝟏𝟏). The resulting 
distributions are shown below in Figure 4.1.1. The smoothest distribution, of course, is the largest 
one with 𝑵𝑵 = 𝟏𝟏𝟏𝟏,𝟏𝟏𝟏𝟏𝟏𝟏.  
 

   N=100                                      N=1,000                                   N=10,000 
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Figure 4.1.1: Distribution of Auxiliary Variable, X = Expenses 
 
For each population, five dependent variables (qualifying amounts, y) were created corresponding 
to five levels of 𝑝𝑝: 10%, 25%, 50%, 75%, and 90%. To achieve this, for every 𝑥𝑥𝑖𝑖 value in each of 
the three populations, five random numbers between zero and one were created for each level of 𝑝𝑝. 
For 𝑝𝑝 =10% for example, the 𝑦𝑦𝑖𝑖,10% value was assigned equal to 𝑥𝑥𝑖𝑖with a 10% probability and it 
was assigned zero otherwise.  
 
4.2 Sampling 
After the populations were created, samples of three different sizes were drawn, 𝒏𝒏 = 𝟏𝟏𝟏𝟏, 𝒏𝒏 = 𝟑𝟑𝟏𝟏, 
and 𝒏𝒏 = 𝟏𝟏𝟏𝟏𝟏𝟏. However, for the smallest population of 𝑵𝑵 = 𝟏𝟏𝟏𝟏𝟏𝟏, only the two smallest sample sizes 
were drawn, as 𝒏𝒏 = 𝟏𝟏𝟏𝟏𝟏𝟏 would have been a complete census in each draw and those results would 
have been uninformative. With two levels of 𝒏𝒏 for the smallest population, three levels of 𝒏𝒏 for the 
other populations, five levels of 𝒑𝒑 for every population, and three total population sizes, altogether 
this made 40 scenarios in the various combinations of  𝑵𝑵,𝒏𝒏, and 𝒑𝒑.  
 
For each of the 40 scenarios, 5,000 independent iterations of sample draws were performed. 
 
4.3 Estimators 
For each of the 5,000 samples from each of the 40 scenarios, the total qualifying amount, 𝑌𝑌� , was 
estimated 3 ways as listed below. 
 

1) The Difference Estimator (DIFF). This is a design-based approach and listed in IRS 
Revenue Procedure 2011-42. Rather than estimating the total of qualifying directly, the 
difference estimator, estimates the expense amount that does not qualify, and then 
subtracts that from the known total expense amount,  𝑇𝑇𝑥𝑥 = ∑ 𝑥𝑥𝑖𝑖𝑁𝑁

𝑖𝑖=1 . The estimate is 
calculated by: 

𝑌𝑌�𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑇𝑇𝑥𝑥 − N�(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)/𝑛𝑛
𝑛𝑛

𝑖𝑖=1

. 

2)  The Mean Per Unit (MPU) estimator. This is the Horvitz-Thompson estimator, which is 
another design-based approach listed in IRS Revenue Procedure 2011-42. Its formula is 
given by: 

𝑌𝑌�𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑁𝑁 �
𝑦𝑦𝑖𝑖
𝑛𝑛

𝑛𝑛

𝑖𝑖=1

 . 

  
3) Weighted Model-Based (MOD). This is the model-based estimator derived in Section 3 
above; it is calculated from:    

𝑌𝑌�𝑀𝑀𝑀𝑀𝐷𝐷 = 𝑇𝑇�𝑦𝑦 = �𝑌𝑌𝑖𝑖
𝑖𝑖∈𝑆𝑆

  + �̂�𝛽�𝑥𝑥𝑖𝑖
𝑖𝑖∉𝑆𝑆

 . 

Note each of the three estimators was calculated on every sample drawn. 
   
4.4 Efficacy Metrics 
Once all 5,000 iterations of sample selection and estimation via the three methods above were 
completed for a scenario, the accuracies of the three estimators were compared by scenario using 
the metrics listed below. 
 
1) Average Standard Error (𝑆𝑆𝐸𝐸����) 

The average standard error is given by: 



𝑆𝑆𝐸𝐸���� = 1
5,000

∑  𝑆𝑆𝐸𝐸𝑗𝑗
5,000
𝑗𝑗=1 , 

where for the jth iteration in a scenario, 

𝑆𝑆𝐸𝐸𝑗𝑗,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  = 𝑁𝑁(𝑁𝑁−𝑛𝑛)
𝑛𝑛

∑ (𝑑𝑑𝑖𝑖,𝑗𝑗− 𝑑𝑑𝚥𝚥���)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛−1
 , where 

 
𝑑𝑑𝑖𝑖,𝑗𝑗 =  𝑥𝑥𝑖𝑖,𝑗𝑗 − 𝑦𝑦𝑖𝑖,𝑗𝑗  , and 

𝑑𝑑𝚥𝚥� =  ∑ 𝑑𝑑𝑖𝑖,𝑗𝑗/𝑛𝑛 𝑛𝑛
𝑖𝑖=1 ; 

𝑆𝑆𝐸𝐸𝑗𝑗,𝑀𝑀𝑀𝑀𝑀𝑀  = 𝑁𝑁(𝑁𝑁−𝑛𝑛)
𝑛𝑛

∑ (𝑦𝑦𝑖𝑖,𝑗𝑗− 𝑦𝑦𝚥𝚥���)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛−1
, where 

𝑦𝑦𝚥𝚥� =  ∑ 𝑦𝑦𝑖𝑖,𝑗𝑗/𝑛𝑛 𝑛𝑛
𝑖𝑖=1 ; and 

𝑆𝑆𝐸𝐸𝑗𝑗,𝑚𝑚𝑚𝑚𝑑𝑑= [(∑ 𝑥𝑥𝑖𝑖𝑖𝑖∉𝑆𝑆 )2 /𝑛𝑛 + ∑ 𝑥𝑥𝑖𝑖2𝑖𝑖∉𝑆𝑆 ] 𝜎𝜎2 where 

𝜎𝜎2 ≅ 𝜎𝜎�2 = ∑ 𝑥𝑥𝑖𝑖−2(𝑦𝑦𝑖𝑖 − �̂�𝛽𝑥𝑥𝑖𝑖)2/(𝑛𝑛 − 1)𝑖𝑖𝑖𝑖𝑆𝑆 , and 

�̂�𝛽 = (1/𝑛𝑛)∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑆𝑆 /𝑥𝑥𝑖𝑖. 

Guidance in IRS Revenue Procedure 2011-42 states that when there are multiple estimators that are 
appropriate to use, taxpayers should use the most accurate one, where accuracy is defined by each 
estimate’s standard error. 

2) Average Coefficient of Variation (CV) 

The average coefficient of variation is given by:  

𝐶𝐶𝑉𝑉���� = 1
5,000

∑  𝑆𝑆𝑆𝑆𝑗𝑗
𝑌𝑌�𝑗𝑗

5,000
𝑗𝑗=1 .   

The average CV was included in the analyses because it closely relates to the relative precision, RP, 
defined as the margin of error8 divided by the estimated amount. The IRS focuses on RP when 
discerning whether estimates have met an acceptable level of accuracy.9 However, unlike RP, the 

 
8 The margin of error for a desired level of confidence probability is the result of multiplying the 
standard error by a critical value corresponding to the confidence level under an appropriate 
assumption for the distribution of the estimate – such as the normal or student’s t distribution. 
9 IRS Revenue Procedure 2011-42 allows taxpayers to use their estimated values as is when the RP is less than 
10%. When the RP exceeds 15%, the IRS still allows the taxpayer to use an estimate, albeit a biased one. 
Instead of their point estimates, taxpayers are allowed to use the least advantageous bound (to the taxpayer) of 
a 95% one-sided confidence interval for the point estimate. So, for example if the taxpayer is estimating a credit 
or a deduction (which are to their advantage) and the RP is 20%, there is a 20% reduction of their estimated 
value. If estimating an amount owed with 20% RP, there is a 20% increase.  Therefore, the taxpayer suffers a 
penalty for imprecision. There is a sliding scale bias from zero to a 15% adjustment of the estimate when the 
relative precision is between 10% and 15%. 
 
This approach allows the IRS to avoid dictating minimal sample sizes in their guidance and instead establishes 
an expectation of accuracy as measured by RP.  
 
When the IRS conducts their own samples in audit, the Internal Revenue Manual IRM 4.473, calls for the same 
approach, with the exception that they give the taxpayer the benefit of the imprecision if their estimated 
adjustment has a poor RP, unless they have worked out some other mutually agreed upon arrangement with the 
taxpayer or the taxpayer has been exceptionally egregious in their tax determinations.  For example, if the IRS 



CV does not rely upon distributional assumptions for the estimate. The CV and its related RP are 
descriptions of how much estimates may vary in relationship to their size. 

3) Mean Squared of Error of the Estimators (MSE) 

The mean squared error is given by: 

𝑀𝑀𝑆𝑆𝐸𝐸 =
1

5,000
�  �𝑌𝑌�𝑗𝑗 − 𝑌𝑌�2
5,000

𝑗𝑗=1

, 

where 𝑌𝑌 is the true know value from the simulated population. While Y, is not typically known in 
practice, it is useful in simulations to compare the average square of the difference between the 
estimates and the actual true value being estimated. For an SE, CV or RP, the amount of variability 
of an estimate is calculated from variability of the estimate in comparison to amount calculated from 
sample results — such as a sample mean. However, MSE is calculated from the estimate’s 
variability compared to the actual known value in the population. 

4) Confidence Interval Coverage:  

𝐶𝐶𝑝𝑝𝑛𝑛𝑓𝑓𝑤𝑤𝑑𝑑𝐶𝐶𝑛𝑛𝐶𝐶𝐶𝐶 𝐼𝐼𝑛𝑛𝑤𝑤𝐶𝐶𝑝𝑝𝐼𝐼𝑝𝑝𝑝𝑝 𝐶𝐶𝑝𝑝𝐼𝐼𝐶𝐶𝑝𝑝𝑝𝑝𝐶𝐶𝐶𝐶 % =  𝐶𝐶/5,000 

where C is the number of the 5,000 iterations containing the actual total qualifying expenses in the 
population inside the 90% two-sided confidence interval around the estimated qualifying expenses.  

5) Average Bias%: 

The average percent bias is given by: 

𝐴𝐴𝐼𝐼𝐶𝐶𝑝𝑝𝑝𝑝𝐶𝐶𝐶𝐶 𝐵𝐵𝑤𝑤𝑝𝑝𝐵𝐵% = 1
5,000

∑  (𝑌𝑌�𝑗𝑗 − 𝑌𝑌)5,000
𝑗𝑗=1 . 

 
The average bias is the mean error. In theory, for unbiased estimates, the average bias approaches 
zero as the number of iterations approaches infinity. The average bias was divided by the true 
population Y in these analyses in order to compare results more easily across different levels of p. 
 

5. Results 
5.1 Average SE 
The table below summarizes the average SE results across all scenarios. Note in general the SE for 
the DIFF tends to decrease as p increases. For each method, the table shading is lightest for the 
lowest SE in the scenario and darkens as the SE increases. Opposite of DIFF, for MPU the SEs 
increases as p increases. Meanwhile, the model-based estimations have roughly the same SEs for 
p=10% and p=90% as well as similar SEs for p=25% and p=75%. This is not surprising after 
considering the lengths of the residuals in Figure 3.3.2. The largest SEs for the model-based 
estimates are at p=50% in each scenario. 
 
Also observe that the model-based estimator, with very few exceptions, has the lowest SE for each 
scenario. Therefore, it would typically be chosen as the estimator to use for federal tax purposes 
according to Revenue Procedure 2011 guidance of choosing the estimator with the lowest SE when 
multiple estimates are appropriate to use. 

 
Table 5.1.1: Average SE for Each Scenario 

Method p 
N=100 N=1,000 N=10,000 

n=15 n=30 n=15 n=30 n=100 n=15 n=30 n=100 

DIFF 
10% 199,729 131,255 2,345,753 1,676,749 901,070 24,125,538 17,566,633 9,734,750 
25% 183,865 121,072 2,301,020 1,653,817 887,382 23,311,803 17,044,904 9,391,062 
50% 188,114 122,821 1,994,217 1,446,558 780,598 20,388,774 15,025,488 8,472,016 

 
draws a sample in audit and extrapolates the taxpayer owes an amount with 20% relative precision, the IRS 
will then discount that amount by 20% due to the imprecision of their estimate.  



Method p 
N=100 N=1,000 N=10,000 

n=15 n=30 n=15 n=30 n=100 n=15 n=30 n=100 
75% 131,607 88,929 1,406,031 1,072,806 600,266 14,949,419 11,390,461 6,596,780 
90% 64,487 48,378 756,079 617,477 370,891 8,000,103 6,657,076 4,160,306 

MPU 

10% 79,995 59,974 762,972 628,556 373,254 7,747,104 6,342,038 4,014,787 
25% 148,473 102,139 1,396,590 1,042,263 578,272 14,705,938 11,085,304 6,522,921 
50% 156,223 105,416 2,004,914 1,469,950 794,651 20,734,369 15,174,504 8,514,295 
75% 199,865 130,656 2,271,334 1,633,882 874,783 23,274,404 17,001,190 9,442,617 
90% 204,395 133,183 2,345,093 1,686,193 900,178 24,154,767 17,455,480 9,738,846 

MOD 

10% 69,559 50,138 679,757 523,515 292,867 6,694,385 5,157,277 2,944,732 
25% 99,422 68,076 1,088,167 777,910 425,871 11,073,711 7,939,751 4,378,046 
50% 116,226 78,975 1,278,979 904,530 492,113 12,972,607 9,185,349 5,027,578 
75% 104,622 71,532 1,092,837 777,349 425,634 10,993,544 7,895,515 4,350,289 
90% 65,627 48,072 680,720 517,520 292,614 6,857,889 5,319,097 3,022,735 

 
 

5.2 Average CV 
See the figure below for typical average CV findings. This one is for a population of 100 expenses 
and a sample size of 15. The figure shows the average CVs for the five levels of p and the three 
estimation methods. 
 

 
Figure 5.2.1:  Average CV Results for N=100, n=15 

 
 
It is true that the model-based estimator has a larger CV when 𝒑𝒑 is small than it does when 𝒑𝒑 is 
large. This may be the source of confusion of why some believed the model-based estimator 
performs poorly in cases of small 𝒑𝒑.   
 
However, lower levels of 𝒑𝒑 have larger CVs for all three estimators. The size of the estimate is in 
the denominator of the CV calculation. A lower value of 𝒑𝒑 will have a smaller estimate. Dividing 
by a smaller estimate yields a larger CV.  
 
In fact, the model-based estimator consistently had the smaller CV of three estimation methods 
tested. The table below lists the average CVs for each of the 40 scenarios. It is shaded to create a 
heat map where lighter shades of blue are closer to zero and the darker colors are assigned to larger 
average CVs.  
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Note the largest and darkest shaded average CVs are for the difference estimator with smaller values 
of p. Note that the average SEs were higher for these scenarios with the difference estimator. That, 
combined with the estimated amount being smaller for smaller values of p, the CV — which is the 
ratio of the SE to the estimate — becomes quite large in these settings. 
 
However, the average CVs for the difference estimator tend to be much smaller for larger values of 
p. Again, from Table 5.1.1, note that in these scenarios, the SE tends to be much smaller. That in 
combination with larger estimates for larger levels of p, the average CVs for the difference estimator 
are quite good (low) with higher levels of p. However, even when it is at its best, the average CV of 
the difference estimator never falls below the model-based estimator’s average. 
 
Unsurprisingly, it is also noted that average CVs were smaller for scenarios with a sample size of 
100, which was the largest size in the study. 
 
 

Table 5.2.2: Average CVs for Each Scenario 
(Lightest Shading is Near Zero, Darkest is Near 1000%) 

Method p 
N=100 N=1,000 N=10,000 

n=15 n=30 n=15 n=30 n=100 n=15 n=30 n=100  

DIFF 

10% 1183% 623% 951% 525% 298% 973% 489% 474% 
25% 256% 83% 629% 310% 56% 530% 289% 78% 
50% 127% 39% 102% 144% 17% 144% 50% 18% 
75% 24% 14% 37% 17% 9% 28% 17% 9% 
90% 9% 6% 9% 7% 4% 11% 8% 5% 

MPU 

10% 67% 56% 68% 67% 39% 67% 69% 43% 
25% 59% 39% 63% 46% 25% 63% 47% 26% 
50% 42% 27% 41% 29% 16% 43% 31% 17% 
75% 31% 20% 31% 22% 12% 32% 23% 13% 
90% 25% 16% 26% 19% 10% 27% 19% 11% 

MOD 

10% 63% 51% 62% 56% 29% 62% 59% 32% 
25% 48% 30% 51% 34% 18% 50% 34% 17% 
50% 29% 19% 26% 18% 10% 28% 19% 10% 
75% 17% 11% 15% 11% 6% 15% 11% 6% 
90% 8% 6% 8% 6% 3% 8% 6% 3% 

 
 
5.3 MSEs 
On the next page are the MSE results for the five levels of 𝒑𝒑 and a population size of 100 with a 
sample of 15.  Note that the model-based estimator consistently yielded the smallest MSE at each 
level of 𝒑𝒑. This was found through-out all of the scenarios as shown in the table just below the 
figure.   
 
To compare the methods more efficiently across the scenarios, the MSE from each scenario for the 
difference and MPU estimators were divided by the corresponding MSE for the model-based 
estimate in the scenarios.  The results of this ratio are presented in the table under the figure. Each 
one is larger than 100%. That is, every MSE from a difference or MPU estimate was larger than the 
model-based estimate in these simulations.  
 



 
 

 
Table 5.3.1:  Ratio of MSE Compared to the MSE of the Model-Based Estimator 

p Method 
N=100 N=1,000 N=10,000 

n=15 n=30 n=15 n=30 n=100 n=15 n=30 n=100 

10% 
DIFF 801% 742% 877% 924% 890% 1,124% 1,141% 1,082% 
MPU 196% 193% 229% 235% 224% 215% 208% 208% 

20% DIFF 320% 262% 449% 442% 394% 463% 490% 474% 
MPU 235% 199% 229% 236% 208% 233% 237% 230% 

50% 
DIFF 274% 253% 287% 285% 266% 299% 298% 306% 
MPU 210% 203% 274% 270% 245% 303% 304% 302% 

75% 
DIFF 199% 190% 250% 245% 239% 235% 232% 225% 
MPU 429% 406% 435% 426% 437% 453% 483% 472% 

90% 
DIFF 149% 146% 177% 177% 170% 218% 215% 223% 
MPU 936% 935% 1,073% 1,011% 957% 1,012% 1,031% 1,061% 

 
 
 
 
 
 
This is more easily discerned from the box plots.10 In the figure below, the true value in the 
population is depicted by the long horizontal line for each level p. The range of estimates clearly 
shows those resulting from model-based estimation tend to be much closer to the actual value in the 
population compared to the alternatives of the difference and MPU methods. The inter-quartile 
ranges are narrower for the model approach compared to the other two estimators. Even the model-
based “outliers” — those estimates beyond 1.5 times their interquartile range — tend to be closer to 
the actual value in most settings than the non-outliers of the other two methods. 
 
Another familiar pattern is illustrated in the figure below. The difference estimator performs better 
than MPU when p exceeds 50% and MPU performs better than the difference method when p is 
below 50%. This was noted in other measures above as well. It is just more visually evident in the 

 
10 The estimated amounts calculated in the 5,000 iterations are depicted by the vertical spread for 
each of the three estimators at each level of p. Each box demarks the interquartile range - from the 
25th to the 75th percentiles of the estimated values. For each method and level of p, the two short 
lines (one below the box and one above the box) are drawn at a distance from each box that is 1.5 
times the difference between the 75th and 25th percentile. Per Tukey’s definition, the estimated 
amounts beyond 1.5 times the interquartile range are considered outliers.  
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Figure 5.2.1: MSE for N=100, n=15 
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Therefore, on average, the model-based estimation method 
produced estimates closer to the true values than the difference 
and the MPU methods.  



box plots. However, in each set of box plots, note that the spread of the estimated values from the 
model-based estimator is typically much lower than either of the design-based estimators.  

 
 
 
 

5.4 Confidence Interval Coverage 
In the figure below, the percent of confidence intervals containing the true population value is 
compared for the five levels of 𝑝𝑝 when 𝑁𝑁 = 100 and 𝑛𝑛 = 15. Note, that there is indeed poor 
coverage with three of the five scenarios falling short of 90% with the model-based approach. This 
could be why there was concern in the other analysis with the use of model-based estimation. 
However, all of the scenarios are less than 90% with the other two alternatives. This was typical of 
the findings in the other scenarios. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A summary of results from the 40 scenarios is provided in the table below. Again, the table was 
made into a heat map with confidence interval coverage above 90% shown in blue, equal to 90% 
(within rounding) in white, and below 90% in red. Lighter colors are closer to 90% while darker 
colors are further away. 
 
Note that only the model-based estimates exceeded 90%. There are also seven scenarios that had 
90% confidence (within rounding) while the other estimators had only two each. The worst coverage 

          p=10%                  p=25%         p=50%                  p=75%                   p=90% 
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Figure 5.2.2: Box Plots of Estimates, N=1,000, n=100 
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Figure 5.3.1:  90% Two-Sided Confidence Interval Coverage, N=100, n=15 
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for the model-based estimation was 78%, 61% for MPU and 58% for the difference estimator. While 
78% is far from 90%, it is closer than the other two values. 
 

Table 5.4.1:  Confidence Interval Coverage 
(Lighter Colors are Closer to 90%. Darker Colors are Further Away. 

Shades of Red are Below 90%. Shades of Blue are Above 90%.) 

Method p N=100 N=1,000 N=10,000 
n=15 n=30 n=15 n=30 n=100 n=15 n=30 n=100 

DIFF 

10% 87% 89% 88% 88% 90% 86% 88% 89% 
25% 86% 89% 86% 87% 89% 86% 88% 90% 
50% 87% 89% 84% 87% 88% 83% 87% 89% 
75% 82% 87% 77% 82% 88% 77% 83% 88% 
90% 69% 74% 58% 74% 84% 62% 73% 83% 

MPU 

10% 66% 78% 62% 72% 85% 61% 72% 83% 
25% 78% 87% 77% 82% 88% 76% 81% 88% 
50% 80% 86% 85% 86% 89% 84% 87% 89% 
75% 87% 89% 87% 89% 90% 87% 88% 89% 
90% 88% 89% 87% 89% 90% 87% 88% 89% 

MOD 

10% 87% 90% 82% 86% 89% 78% 78% 91% 
25% 82% 85% 89% 87% 87% 90% 89% 91% 
50% 90% 91% 88% 90% 88% 89% 91% 89% 
75% 90% 92% 91% 89% 90% 90% 88% 88% 
90% 84% 89% 79% 79% 91% 79% 81% 88% 

 
 
There are scenarios where the other two methods do have better coverage than model-based; 
however, those estimates are not the ones that would be used in the setting.  For example, for all 
sample sizes, when 𝑁𝑁 = 1,000 and 𝑝𝑝 = 10%, the difference estimator has better confidence 
coverage than the model-based estimator. The width of the confidence interval is dependent on the 
standard error. When 𝑝𝑝 is below 50%, the difference interval has larger standard errors than the 
MPU estimator; this creates wider confidence intervals for the difference estimator and therefore 
better coverage.  
 
However, that does not make it a better estimator. See the box plots above. Guidance in the IRS 
Revenue Procedure 2011-42 dictates using the estimator with the smaller standard error when 
choosing among those that are appropriate to use (meet the assumptions for their use).  Of the design-
based choices, that would be the MPU estimator in these cases – but note the MPU estimator has  
worse coverage than model-based for the same scenario 𝑁𝑁 = 1,000 and 𝑝𝑝 = 10%.  
 
It should be noted that in general poor confidence interval coverage was noted in all of the estimation 
methods. The problem lies with construction of the confidence intervals using the student’s 
t-distribution which assumes an underlying normal distribution of the estimates.   
 
The figure below shows the distribution of estimates for 𝑵𝑵 = 𝟏𝟏𝟏𝟏,𝟏𝟏𝟏𝟏𝟏𝟏, 𝒏𝒏 = 𝟏𝟏𝟏𝟏, and 𝒑𝒑 = 𝟗𝟗𝟏𝟏%.  It 
is clear the distributions of the estimates are not normally distributed bell-shaped curves. Even the 
MPU shows an asymmetric longer tail on the right than the left. 
 
It is interesting to note though, as expected from the MSE analysis and that p exceeds 50% in this 
scenario, that the MPU has a wider range of estimated values than the difference estimator. In 
addition, as illustrated below and by the MSEs and the box plots, the model-based estimator has a 
narrower range of values than the other two. Its estimates are close to the actual value more 
frequently and do not vary as far from it. The difference estimator, which would be the one used 



according to the revenue procedure, is more frequently far from the true value than it is close; 
although, its average over all 5,000 estimates does fall near actual population value.  
 
The solid black lines marks where the true population value is, the dotted red lines note the average 
estimated amount.) In the figure below these lines fall on top of each other, which is expected for 
unbiased estimates and a large number of iterations.  
 

 
 

Figure 5.3.2:  Distribution of Estimates for N=10,000, n=15, p=90% 
 

5.5 Bias 
While reviewing the distribution plots, a discrepancy in the model-based estimators was noted 
sporadically in a few of the scenarios. For example, the figure below shows the distribution plots 
for the scenario where N=100, n=15, and p=25%. The average estimate over the 5,000 iterations 
does not quite align with the actual value for the model-based estimator.  
 
From this figure, it is clear that the model-based approach is still closer to the actual value far more 
frequently than the other two estimators and it has a narrower range of estimated values than the 
wider spread of the other two.  
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

  
  

Figure 5.4.1: Distribution of Estimates for N=100, n=15, p=25% 
True 𝒀𝒀                            𝒀𝒀�� 



As a side note, the apparent missing left tail of the MPU estimator was due to no estimates falling 
below zero. It is impossible for any actual values to be less than zero the way the data were 
constructed for these simulations. The scales of the horizontal axes are the same for all three plots. 
The difference estimator falls below zero in many of the iterations due to nonsense resulting from 
the calculation when the estimate of the non-qualifying amount exceeds the total sum of the 
expenses (auxiliary variable, x) in the population. 
 
However, that is a distraction from the more pressing question: why is there bias at all? In Section 
3.7, it was shown that the estimate model is unbiased. This led to many more questions to consider: 
 

1 How bad/frequent was the apparent bias? 
2 When does it occur and why? 
3 What does “model-unbiased” truly mean? 
4 Was the model mis-specified? 
5 Were the calculations in Section 3.7 demonstrating model-unbiased, correct? 
6 Is this a result of the inconsistency identified in Section 3.6? 
7 Were the data simulated correctly — as described in Section 6.1 — according to the 

assumptions laid out in Section 3.2? 
 
The table below summarizes the bias percentage (difference between the average estimate and actual 
value expressed as a percent) of the model-based estimator after the 5,000 iterations in each of the 
40 scenarios. There was little/negligible bias found in the higher levels of 𝒑𝒑 and in the largest 
population size. The problematic scenarios were in the smallest population for lower levels of 𝒑𝒑. 
Interestingly, sample size, was less of a factor.  
 

Table 5.5.1: Bias% of Model-Based Estimator Across Scenarios 
(Lighter Colors are Closer to Zero. Darker Colors are Further Away. 

Shades of Red Under-Estimated on Average. Shades of Blue Over-Estimated on Average.) 

p 
N=100 N=1,000 N=10,000 

n=15 n=30 n=15 n=30 n=100 n=15 n=30 n=100 
10% 3.6% 3.8% 2.0% 3.5% 2.1% 1.3% 2.6% 1.8% 
25% 15.0% 12.2% 7.2% 6.4% 6.1% 0.6% 0.5% -0.2% 
50% -9.2% -7.7% -3.4% -3.4% -3.1% 1.5% 1.2% 1.3% 
75% -0.2% 0.0% -0.7% -0.9% -0.5% -1.5% -1.3% -1.2% 
90% 1.0% 0.8% 0.7% 0.8% 0.9% -0.2% -0.1% -0.1% 

 
The smallest sample size of 15 was problematic for the smallest population of 100 as it had less bias 
for the mid-size population of 1,000 and it had small to negligible bias for the largest population of 
10,000. While sample size did play a role, the population size was more influential. Figure 4.1.1 
was reconsidered. The largest population was a smoother distribution compared to the choppier 
smaller populations. Was that somehow reducing bias? 
 
The table below lists the actual 𝒑𝒑 and actual 𝑹𝑹′ attained in the population construction, as well as 
the average estimated beta, 𝜷𝜷�� =  ∑ 𝜷𝜷�𝟏𝟏,𝟏𝟏𝟏𝟏𝟏𝟏

𝒋𝒋=𝟏𝟏 /𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏, from each of the 40 scenarios. The lighter 
shadings are values close to the intended p, while darker shading is further away. Blue shading 
indicates values above the intended p, while red indicates values below. 
 

Table 5.4.2: Actual p, Actual 𝑹𝑹′, and Average 𝜷𝜷� by Scenario 
(Lighter Colors are Closer to the intended p. Darker Colors are Further Away. 

Shades of Red are Below the Intended p, Shades of Blue are Above.) 
N n Intended p 10% 25% 50% 75% 90% 

100 15 
Actual p 12.0 25.0 47.0 71.0 89.0 
Actual 𝑅𝑅′ 12.6 30.4 42.4 70.9 90.1 

�̅̂�𝛽 12.1 25.1 47.0 71.1 89.1 



N n Intended p 10% 25% 50% 75% 90% 

30 
Actual p 12.0 25.0 47.0 71.0 89.0 
Actual 𝑅𝑅′ 12.6 30.4 42.4 70.9 90.1 

�̅̂�𝛽 11.9 25.1 47.1 71.0 89.1 

1,000 

15 
Actual p 11.3 24.4 52.2 74.9 89.9 
Actual 𝑅𝑅′ 11.6 26.2 50.5 74.3 90.8 

�̅̂�𝛽 11.3 24.3 52.2 74.9 90.1 

30 
Actual p 11.3 24.4 52.2 74.9 89.9 
Actual 𝑅𝑅′ 11.6 26.2 50.5 74.3 90.8 

�̅̂�𝛽 11.2 24.5 52.2 75.0 90.0 

100 
Actual p 11.3 24.4 52.2 74.9 89.9 
Actual 𝑅𝑅′ 11.6 26.2 50.5 74.3 90.8 

�̅̂�𝛽 11.3 24.4 52.2 74.7 89.9 

10,000 

15 
Actual p 9.6 25.5 49.9 74.9 89.7 
Actual 𝑅𝑅′ 9.9 25.5 50.5 74 89.7 

�̅̂�𝛽 9.7 25.3 49.7 75.2 89.9 

30 
Actual p 9.6 25.5 49.9 74.9 89.7 
Actual 𝑅𝑅′ 9.9 25.5 50.5 74 89.7 

�̅̂�𝛽 9.6 25.4 49.9 75 89.8 

100 
Actual p 9.6 25.5 49.9 74.9 89.7 
Actual 𝑅𝑅′ 9.9 25.5 50.5 74 89.7 

�̅̂�𝛽 9.7 25.5 49.9 74.9 89.7 
 
The lightest shadings of blue and pink show that percentages for the actual p, actual R’, and average 
estimated beta, 𝜷𝜷�� ,  are all within a percentage point of the intended p when p=90% and/or when 
N=10,000.  These are also within a percentage point for most sample sizes when N=1,000 and p 
=25% or p=75%. The smallest population, when N=100, had the farthest values from the intended 
p. 
 
While exploring whether consistency was the issue for the observed bias — and whether that was 
related to population size, it became apparent that the mechanism of creating the simulated levels 
of 𝒑𝒑 was part of the issue. In each scenario, every record in the population was given a chance of 
qualifying; the chance was 𝒑𝒑. As expected, 𝜷𝜷�� , the estimated beta, averaged over the 5,000 iterations 
and was indeed approximately equal to the actual 𝒑𝒑 simulated in the population but, not necessarily 
the intended p. The population construction did not necessarily result in precisely 𝒑𝒑 percent of the 
records qualifying nor did the resulting actual 𝒑𝒑 equal 𝑹𝑹′ = ∑ 𝒀𝒀𝒊𝒊𝑵𝑵

𝒊𝒊=𝟏𝟏 /∑ 𝑿𝑿𝒊𝒊𝑵𝑵
𝒊𝒊=𝟏𝟏 .   

 
The presence or absence of a few large records in the tails of the distribution could swing 𝑅𝑅′ to differ 
from the actual p and intended p — as noted in the smaller population with several cells shaded 
either a dark blue or dark red.  

For example, when intended p=25%, N=100, and n=30, the actual p is within rounding equal to the 
intended p, but the actual R’=30.4%, more than 5% above the intended p in for the population. This 
explains the root of the inconsistency when estimating R’ from 𝛽𝛽�.   

The presence or absence of a few large records in the tails of the distribution could swing 𝑅𝑅′ to differ 
from the actual p. 

The simulated populations were updated to force the attained p to be closer to the intended p in each 
scenario. To achieve this, the population of size N was divided into Np groups of equal counts (or 
nearly equal within rounding).  Then a random record within each group was assigned Yi = xi while 



the remaining  Yi in the group were assigned to be equal to zero. This forced the p attained in the 
population to equal the intended p.  

In addition, for diagnostic purposes, to also force the actual 𝑅𝑅′ to be closer to the actual p - at least 
for the next set of analyses, the population listing was sorted from largest to smallest value of xi 
prior to dividing the population into the Np groups.  

This forced a more even distribution of large and small qualifying records in the population for the 
next set of analyses. It constructed a population where high valued expenses actually were 
qualifying just as frequently as low valued expenses — rather than merely given an equal chance to 
qualify during the population construction. 

The 5000 iterations of sample draws and estimations were then repeated for each of the 40 scenarios. 
The table below summarizes the resulting average estimated 𝛽𝛽 together with the actual 𝑝𝑝 and 𝑅𝑅′ in 
the population.  

Note in the updated populations, every actual p is now equal to the intended p. Every value of R’ is 
now within a percentage point of the intended p, as are all values of 𝛽𝛽��. 

Table 5.4.3: Actual p, Actual 𝑹𝑹′, and Average 𝜷𝜷� by Scenario on Updated Population 
Lighter Colors are Closer to the intended p. Darker Colors are Further Away. Shades of Red are 

Below the Intended p, Shades of Blue are Above. 
 n Intended p 10% 25% 50% 75% 90% 

100 

15 
Actual p 10.0 25.0 50.0 75.0 90.0 
Actual 𝑅𝑅′ 10.3 24.2 50.4 75.0 90.1 

�̅̂�𝛽 9.9 24.9 49.8 75.2 90.0 

30 
Actual p 10.0 25.0 50.0 75.0 90.0 
Actual 𝑅𝑅′ 10.3 24.2 50.4 75.0 90.1 

�̅̂�𝛽 9.9 25.0 50.1 75.1 90.1 

1,000 

15 
Actual p 10.0 25.0 50.0 75.0 90.0 
Actual 𝑅𝑅′ 9.9 24.6 50.2 74.9 90.2 

�̅̂�𝛽 10.1 25.1 49.7 74.9 89.9 

30 
Actual p 10.0 25.0 50.0 75.0 90.0 
Actual 𝑅𝑅′ 9.9 24.6 50.2 74.9 90.2 

�̅̂�𝛽 10.2 24.9 49.9 75.1 90.0 

100 
Actual p 10.0 25.0 50.0 75.0 90.0 
Actual 𝑅𝑅′ 9.9 24.6 50.2 74.9 90.2 

�̅̂�𝛽 10.0 25.1 49.9 75.0 90.0 

10,000 

15 
Actual p 10.0 25.0 50.0 75.0 90.0 
Actual 𝑅𝑅′ 10.1 24.9 49.9 75.1 90.0 

�̅̂�𝛽 10.1 25.1 50.2 75.1 90.1 

30 
Actual p 10.0 25.0 50.0 75.0 90.0 
Actual 𝑅𝑅′ 10.1 24.9 49.9 75.1 90.0 

�̅̂�𝛽 10.1 25.1 50.0 75.1 89.9 

100 
Actual p 10.0 25.0 50.0 75.0 90.0 
Actual 𝑅𝑅′ 10.1 24.9 49.9 75.1 90.0 

�̅̂�𝛽 10.0 25.0 50.0 74.9 90.0 
 
Furthermore, as demonstrated in the table below, the bias in the updated population was significantly 
reduced when the actual 𝑹𝑹′ was closer to the actual 𝒑𝒑; it is minimal/negligible in this updated data. 
 



Table 5.4.4: Reduced Bias% of Model-Based Estimator Across Scenarios for Updated 
Populations 

p 
 N=100   N=1,000   N=10,000  

 n=15   n=30   n=15   n=30   n=100   n=15   n=30   n=100  
10 -3.6 -2.8 2.6 2.8 1.1 0.1 -0.3 -1.2 
25 2.3 2.0 1.8 0.9 1.6 0.8 0.7 0.0 
50 -1.2 -0.4 -0.9 -0.5 -0.5 0.5 0.1 0.2 
75 0.3 0.1 0.0 0.2 0.1 0.1 -0.1 -0.3 
90 0.0 0.1 -0.3 -0.2 -0.2 0.1 -0.1 0.0 

 
The figure below shows the updated distributions for the same scenario as Figure 7.5, where 𝑵𝑵 =
𝟏𝟏𝟏𝟏𝟏𝟏,𝒏𝒏 = 𝟏𝟏𝟏𝟏, and 𝒑𝒑 = 𝟐𝟐𝟏𝟏%. The average estimate, 𝒀𝒀�� now closely aligns with the true value for the 
model-based estimator. 
 
From these results, it was concluded that consistency was an issue influencing the bias in the original 
simulated populations.  
 
The important question is whether this inconsistency could be a problem in practice. The answer is 
probably not.  
 
First, even though it created some bias in the original populations, the model-based estimates were 
less variable and tended to be closer to the true values than the two alternatives of the difference and 
MPU estimators that would be most likely used if model-based estimation were not applied.  This 
was demonstrated by the distributional figures, the box plots, average SEs, average CVs and the 
MSEs. 
 
Second, in practice, the sample design is typically stratified by the size of the expenses, 𝒙𝒙𝒊𝒊. When 
𝑹𝑹′ is significantly different across size strata, separate models are constructed by stratum, or by 
groups of strata with similar 𝑹𝑹′. Therefore, in general, the stratification provides natural embedded 
protection from extreme differences resulting from the presence or absence of a few extreme large 
values selected in the sample.  
 
 

 
 
  
 
 

True 𝒀𝒀                            𝒀𝒀�� 
Figure 5.4.2: Distribution of Estimates in Revised Population, N=100, n=15, p=25% 



 
6. Conclusions 

None of the estimators consistently have 90% coverage or better.  Confidence interval coverage is 
relatively equal across the three estimators for 𝑝𝑝 values in the middle range, 25%, 50%, and 75%. It 
is more uneven with extreme values of 𝑝𝑝 (10%, and 90%). The problem is in using the t-distribution 
as 𝑝𝑝 gets further from 50%. 
 
When deciding which estimate to use for federal tax purposes out of two or more statistically 
appropriate choices, the guidelines in the IRS Revenue Procedure 2011-42 has taxpayers using the 
estimator with the smallest standard error. When 𝑝𝑝 < 50%, the MPU would be used — but the model-
based estimator has better confidence interval coverage in this case. When 𝑝𝑝 >  50%, the difference 
estimator would be used, but again, the model-based approach has better confidence interval 
coverage in these cases. Hence, in federal tax settings,  the model-based estimate has better 
confidence coverage than the alternative that would be used from design-based approaches. 
 
Some bias was found in the model-based estimator, despite being regarded as “model unbiased”. 
However, across the board, the model-based estimator outperforms the design-based estimators in 
CV, SE, and MSE. The distributions, especially illustrated by the box plots, also demonstrate that 
the model-based estimates are less variable and are closer to the actual values more frequently in 
the scenarios tested. The model-based estimate was still overall the better choice in all scenarios 
tested. 
 
That said, use caution in practice when the sampled 𝒑𝒑� =  𝜷𝜷� differs too far from the 𝒓𝒓′ =
∑ 𝒚𝒚𝒊𝒊𝒏𝒏
𝒊𝒊=𝟏𝟏 /∑ 𝒙𝒙𝒊𝒊𝒏𝒏

𝒊𝒊=𝟏𝟏 , found in the sample. This can result in an inconsistent and biased estimate. In the 
scenarios tested in this analysis, despite the bias from the inconsistency, the model-based estimator 
still performed better than the alternative that would be used according to IRS Revenue Procedure 
2011-42. Alternatively, a stratified approach could resolve the issue. When there are disparate 𝒓𝒓𝒉𝒉′  
observed or anticipated, where the strata are enumerated by h=1, 2, …,  separate stratum estimates 
can be calculated. 
 
In terms of the original research questions regarding the efficacy of  model-based estimation when 
applied to all or nothing data, the table summarizes the findings. 

 
Table 8.1: Summary of Conclusions on Impetus Questions 

 Question Findings 

1 Accuracy and 
Appropriateness  

 
The theory is fine – with the correct variance structure.  
 
Additionally, model-based estimates were consistently closer to the 
true values when compared to the design-based estimator alternatives 
that would most likely be applied in the same settings. 
 

2 Bias 

 
Despite the theory demonstrating model-unbiased, some bias was 
noted stemming from �̂�𝛽 that is an inconsistent estimate of the ratio of 
total qualifying to total non-qualifying monetary amounts and simulated 
data that did not have populations with an equal outcome of large and 
small values with equal qualifying rates. 
 
However, even in the presence of this issue, the model-based still 
proved to be a more accurate estimator than the alternatives in the 
scenarios tested in this analysis. 
  

3 Confidence 
Interval Coverage 

 
All of the estimators had poor coverage. 



 
Of the estimators analyzed, the model-based approach had better 
coverage than the design-based estimator that would be applied 
according to IRS Revenue Procedure 2011-42. 
 

4 Infrequent Events 
When p is Small 

 
All estimators had poor CVs (and would therefore, also have poor 
RPs) for the lowest value of p tested in this analysis. 
 
The model-based approach consistently had better CVs than the 
alternatives.  
 
In actuality, the residuals for say, p=10% are mirror images of the 
residuals for p=90%. 
 
The model based estimators had better SEs and MSEs than the other 
estimators. 
 

 
In short, there was nothing found in the analysis that would lead these researchers to believe the 
design-based alternatives of a difference or MPU estimator would be a better choice than a model-
based estimator in the presence of all or nothing data.  
 
The model-based estimation approach provided the more accurate estimates compared to these 
alternatives, had better confidence interval coverage and on average were closer to the true value 
than the design-based approaches. 
 

7. Next Steps 
 
Every answer yields further questions, and more analyses can always be performed. Below is a list 
for future research. 
 
1. Simulate more populations with the auxiliary variable varying the distribution parameters such 

as skewness and kurtosis and distance between p and 𝑅𝑅′. 
 

2. Expand analyses to include “all or nothing, or something in between.” In such analysis,  

= �
           𝑥𝑥𝑖𝑖             ,𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑤𝑤𝑝𝑝𝑤𝑤𝑤𝑤𝑦𝑦 𝑝𝑝

0 <  𝑧𝑧𝑖𝑖 < 𝑥𝑥𝑖𝑖      ,   𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑤𝑤𝑝𝑝𝑤𝑤𝑤𝑤𝑦𝑦 𝑞𝑞
  0                     ,𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑤𝑤𝑝𝑝𝑤𝑤𝑤𝑤𝑦𝑦 1 − 𝑝𝑝 − 𝑞𝑞

 

 
Many taxpayer’s facts and circumstances fall into this more complex structure. It tends to have 
smaller variances though because the residuals from the second outcome are shorter than the 
residuals from an all or nothing setting. 
 

3. Improve confidence interval coverage. 
a) Determine more appropriate distribution statistics than the t-distribution when 

constructing confidence intervals.  
b) Explore and compare non-distributional techniques for determining confidence intervals, 

such as bootstrapping or jackknifing. 
 
4. Further analyze bias. 

a) Investigate the impact of consistency issues on bias and hindrance to convergence more 
thoroughly.  

b) Determine a rule of thumb for settings when there may be too much bias. 
 



5. Add stratified sample designs to the analyses, including a certainty stratum for extreme values. 

a) Extrapolating by stratum, will improve the variances for the difference and MPU 
estimators. It will be interesting to determine whether under stratified designs, the model 
based so clearly outperforms the other design based approaches. 

b) Stratification should reduce the consistency issue and therefore the bias found in 
simulations. 

c) Potentially, this could also make the estimates more normally distributed on a stratum-
by-stratum basis and thus possibly improve confidence interval coverage of the total 
estimates taken from the sum over the strata. 
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